
KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

78 | KILAT

Analysis and Design of CRC-32 IEEE 802.3

Generator for 8 Bit Data Using VHDL

Aprilia Putri Dewanty1; Bheta Agus Wardijono2

1 Department of Electrical Engineering, Faculty of Industrial Technology Universitas Gunadarma,

Depok
2 STMIK Jakarta STI&K, Jakarta, Indonesia

1 apriliaputridewanty@gmail.com

ABSTRACT

Cyclic Redundancy Check (CRC) is one of the methods used to transmit data at the data link layer

which can detect errors. CRC generator will work when there is incoming data with a data width

of 8 bits then perform CRC-32 IEEE 802.3 calculations. In this reserch, there are two conditions

when the first port is in high condition, the data output for the remaining ports will be worth 0,

whereas if it is in low condition, the remaining output ports will be proportional to the results of

the incoming data calculation. In this reserch, the modulo-2 division parallel circuit method was

used. The test is carried out by matching the simulation results using Xilinx ISE Simulator with the

implementation on the Spartan 3E XC3S500E device with the calculation results. The circuit

scheme is simple, the noise generated is less and the resources used are also less than previous

reserch using the same CRC method. This study required 223 4-input LUT resources, 114

Occupied slices, 72 IOB flip flops, 114 bonded IOBs and 1 BUFGMUX, where this study received

fewer resources than previous reserch.

Keywords: CRC Design, VHDL, Xilinx ISE 8.1

ABSTRAK

Cyclic Redundancy Check (CRC) merupakan salah satu metode yang digunakan untuk

mengirimkan data pada lapisan data link yang dapat mendeteksi kesalahan. Generator CRC akan

bekerja ketika ada data yang masuk dengan lebar data 8 bit kemudian melakukan perhitungan

CRC-32 IEEE 802.3. Pada penelitian ini terdapat dua kondisi ketika port pertama dalam kondisi

high, keluaran data untuk sisa port akan bernilai 0, sedangkan jika dalam kondisi low maka sisa

port output akan sebanding dengan hasil dari input yang masuk. perhitungan data. Pada penelitian

ini digunakan metode rangkaian paralel modulo-2 divisi. Pengujian dilakukan dengan

mencocokkan hasil simulasi menggunakan Xilinx ISE Simulator dengan implementasi pada

perangkat Spartan 3E XC3S500E dengan hasil perhitungan. Skema rangkaiannya sederhana, noise

yang dihasilkan lebih sedikit dan resource yang digunakan juga lebih sedikit dibandingkan

penelitian sebelumnya dengan menggunakan metode CRC yang sama. Penelitian ini membutuhkan

223 4-input LUT resources, 114 Occupied slices, 72 IOB flip flops, 114 bonded IOBs dan 1

BUFGMUX, dimana penelitian ini menerima resource yang lebih sedikit dibandingkan penelitian

sebelumnya.

Kata kunci: CRC Design, VHDL, Xilinx ISE 8.1

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

KILAT | 79

1. INTRODUCTION

The development of digital technology today makes it easier for clients to get information

about data. To check the data there is a noise or interference then use CRC. The method used by

CRC is very simple and efficient to detect an error in the information data that will be received by

the client.

Cyclic Redundancy Check (CRC) is an error-checking block code that has been used for

error detection, while the received word has to be divided by a predetermined number called the

generator number. If the remainder is zero, this means that there is no error detected, whereas

nonzero remainder this means that there is an error detected. The error detection is done by

counting the remaining bit on the message that needs to be transmitted. The remaining bit results

will connect to the message to generate the codeword.

Specific interface chip will cause waste of resources and increased cost, particularly in the

field of electronic design. This situation results in the requirement of realizing the whole system

function in a single or a very few chips. Therefore the design will be designed using Very high

speed Integrated Circuit Hardware Description Language (VHDL) which can be implemented on

FPGA. The VHDL source code has been edited and synthesized using Xilinx ISE 8.1. It will be

simulated and tested using ISim. By using this software can be known summary of the design

(number of slices and logic gates used in the design) that have been made.

The device may take corrective action, such as rereading the block or requesting that it be

sent again. Otherwise, the data is assumed to be error-free (though, with some small probability, it

may contain undetected errors; this is the fundamental nature of error-checking. Many engineers

conducting research on Cyclic Redundancy Code (CRC) Generator, including :

In the research work of Pramod S P, Rajagopal A, and Akshay S Kotain with title “FPGA

Implementation of Single Bit Error Correction using CRC”, in this research the designs are made

using VHDL and generator polynomial use is CRC-16 and CRC-8. The algorithm has been

implemented and verified on Xilinx Virtex-5 FPGA device. The device used for implementation is

xc5vlx30 with speed grade 3. CRC generator is designed using method of modulo-2 division

method. Purpose of this project is to focuses on effective implementation to detect the exact place

of single bit error and correct them using minimum hardware. Experimental results demonstrate the

validity of the proposed system[3].

In the research of Debopam Ghosh, Arijit Mitra, Arijit Mukhopadhyay, Aniket Dawn and

Devopam Ghosh with title “A GENERALIZED CODE FOR COMPUTING CYCLIC

REDUNDANCY CHECK”, in this research the designs are made using VHDL and generator

polynomial use is CRC-3 for simulation. This simulation uses software Xilinx ISE Design Suite.

CRC generator is designed using method of modulo-2 division method. Purpose of this project is

for developing a generalized CRC code where the user can vary the size of the generator

polynomial. Experimental results demonstrate the validity of the proposed system[4].

In the research work of P. Harika and B. V. V. Satyanarayana with title “FPGA Based High

Speed Parallel Cyclic Redundancy Check”, in this research the designs are made using Verilog

HDL and generator polynomial use is CRC-4. CRC generator is designed using method of modulo-

2 division method and LFSR (linear feedback shift Register). Purpose of this project is to to design

high-speed parallel circuits of cyclic redundancy check (CRC). Implementation of CRC based on

unfolding, pipelining, and retiming algorithms. CRC architectures are first pipelined to reduce the

iteration bound by using novel look-ahead pipelining methods and then unfolded and retimed to

design high-speed parallel circuits. the proposed design can increase the speed by up to 25% and

control or even reduce hardware cost[5].

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

80 | KILAT

In the research work of Chaitali Tohgaonkar , Prof. Sanjay B. Tembhurne and Prof. Vipin S.

Bhure with title “Design of Parallel CRC Generation for High Speed Application”, in this in this

research the designs are made using VHDL and generator polynomial use is CRC-32. CRC

generator is designed using method of modulo-2 division method and parallel pipelining methods .

Proposed design (32 bits) reduces the computation time and also reduces the number of slices used.

So applying pipelining to the CRC has increased the throughput to achieve high speed design. This

paper presents implementation of parallel Cyclic Redundancy Check (CRC) based upon DSP

algorithms of pipelining, retiming and unfolding. The design is simulated using Xilinx ISE[6].

In the research work of Deepali P. Atrawalkar and Manoj D. Bagde with title “Design and

Simulation of Parallel CRC Generation Architecture for High Speed Application”, in this in this

research the designs are made using VHDL, simulated using Modelsim and synthesized by Altera

Quartus II. The generator polynomial use is CRC-16 CCITT. CRC generator is designed using

pipelined CRC method. Purpose of this project is to use pipelined CRC which can reduce clock

cycle to achieve high speed design. The design can be implemented with DSP algorithms which

improves the time further,increase speed in practice[7].

In the research work of Abdul Rehman Buzdar, Liguo Sun with title “Cyclic Redundancy

Checking (CRC) Accelerator for Embedded Processor Datapaths”, in this research the designs are

made using VHDL and generator polynomial use is CRC5, CRC8, CRC16 and CRC32 inside a

CRC accelerator main block. Purpose of this project is to generate the performance of CRC

accelerated Microblaze SoftCore embedded processor datapath in terms of execution time and

energy efficiency. This acceleration is achieved at the cost of some area overhead[8].

2. CRC PROPOSED METHOD

2.1. Block Input Component Design

The CRC generator was designed in this research using a divisor polynomial of CRC-32

IEEE 802.3 with data width is 8 bits. CRC generator has 4 input port and 2 output port, which port

are port of dataword, crc_32, clk and rst as input ports and the output ports are port of remainder

and codeword. The dataword port in this design has an 8 bit data width. The clock port serves to

generate a pulse signal (clock). Rst port is a port to enable or disable CRC generator. The crc_32

port is value of polynomial divisor (CRC-32) ,this port has a 33 bit data width. Remainder port is

the result of combining dataword and augmented dataword then dividing it by divisor polynomial.

Codeword port is the result of combining dataword with remainder value. Block diagram of this

process can be seen in the figure 1.

Figure 1. Block Diagram of CRC calculation

CRC generator design will be simulated to Xilinx ISE software using VHDL programming

language.

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

KILAT | 81

2.2. Program Description

In this section will discuss about the CRC program scripts created using language VHDL.

The draft design created using Xilinx ISE software. This program will initially initialize and then

put the data processed with data width of 8 bits. Before the calculation, the program will check rst

port. If the rst port is high logic then the remainder port will be 0 or return to initially condition but

if the low logic then it will generate the CRC code with the specified polynomial divisor. How the

program works can be seen as shown in figure 2.

Figure 2. Program Flowchart

2.3. Implementation of Design using Software

In the pr.ocess of design system using VHDL code will be implemented using Xilinx ISE 8.1

software as shown in the figure 3.

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

82 | KILAT

Figure 3. Process Panel

After the synthesis process, the design implementation is carried out. In this section there are

three steps: translating, maps, places and routes. Translate is the process of combining multiple

files into a netlist. Map is the process of mapping a slice and I/O Block. Place and route is the

placement of the design on the chip and connected components. After the implementation design is

complete, the design summary and report can be seen. After this process, the RTL schematic can be

viewed. Register-Transfer Level (RTL) is a design abstraction that models synchronous digital

circuits in terms of the flow of digital signals (data) between hardware registers, and the logical

operations performed on those signals.

3. CRC TESTING AND ANALYSIS

3.1. System Testing

System testing is done based on the design that has been made in this research. Before

performing a system simulation, first determine the data used in this research. There are 8 test data

to be conducted on this research then do calculations using modulo 2 division method. The result of

count with result of the design and simulation will be compared to determine the simulation result.

The following is an example of a CRC calculation using one of the data attempted 00011110 (1E in

hexadecimal).

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

KILAT | 83

As calculated above, the dataword will be combined with augmented dataword and then it

will be divided by the polynomial divisor to generate remainder bit. The result of remainder bit is

01110000100111110111101101111010. After the remainder bits are obtained then combined with

the dataword and then it will generated the codeword.

Codeword = 00011110_01110000100111110111101101111010 (1E709F7B7A in

hexadecimal). Codeword will be divided by the polynomial divisor for error checking. The

following is a calculation for error checking.

On the above calculation, remainder bit is 00000000000000000000000000000000. It has

been ensured that data received no error.

In Table 1 shows the trial data performed and also the results of calculations that have been

obtained. If the codeword matched with the result of the calculation so it shows that there is no

error detected.

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

84 | KILAT

Tabel 1. Table Trial Data

No.
Data

(Binary)

Data

(Hex)
Remainder (Binary)

Remainder

(Hex)

Codeword

(Hex)

1. 11010011 D3 0001 1100 1101 1000 1CD86D30 D31CD86D30

 0110 1101 0011 0000

2. 00011110 1E 0111 0000 1001 1111 709F7B7A 1E709F7B7A

 0111 1011 0111 1010

3. 11111111 FF 1011 0001 1111 0111 B1F740B4 FFB1F740B4

 0100 0000 1011 0100

4. 00001111 0F 0011 1000 0100 1111 384FBDBD 0F384FBDBD

 1011 1101 1011 1101

5. 11010100 D4 0000 0010 1001 1111 029F3D35 D4029F3D35

 0011 1101 0011 0101

6. 11010101 D5 0000 0110 0101 1110 065E2082 D5065E2082

 0010 0000 1000 0010

7. 11010110 D6 0000 1011 0001 1101 0B1D065B D60B1D065B

 0000 0110 0101 1011

8. 11010111 D7 0000 1111 1101 1100 0FDC1BEC D70FDC1BEC

 0001 1011 1110 1100

The result of trial data in hexadecimal is completely can be seen in the appendix. On the

results obtained there is no error, because the codeword matched with the result of the calculation.

Simulation results of the design can be seen in Figure 4. This simulation used Isim simulation.

Figure 4. Result of Simulation

Figure 4. is the result of simulation data that included in the CRC generator. Input ports are

dataword port, crc_32 port, clk and rst port. Output ports are remainder port and codeword port. If

rst port is logic low then remainder port will release results of calculation between the data entered

(dataword) and the divisor polynomial (crc_32). The value of the dataword used is the same as the

table. 1. The codeword port is result of combination of dataword and remainder bits. If rst port is

high logic then remainder port will be 0 or no results of calculations. One clock cycle (clk_period)

= 10 ns. The calculation results in table 1 and the simulation results yield the same value.

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

KILAT | 85

3.2. Design Summary

Results of the resources used from this research can be seen in Figure 5. In Figure 5 has

found the number of resources used in a 4-input LUTs is 223 or 1% of the resources available. the

number of resources used from the Occupied slice is 114 or 1% of the resources available, the

number of resources used on the IOB flip flops is 72 (32 IOB flip flops of remainder bit and 40

IOB flip flops of codeword), it corresponds to the theory of to the theory of linear shift register

Method for encoding/decoding that can be seen on the page 12 , the number of resources used on

the bonded IOBs is 114 or 45% of the resources available and the number of resources used on

BUFGMUXs is 1 or 4% of the resources available.

Figure 5. Design Summary

3.3. Comparison with pervious research

In this section will discuss the results of this research with previous research. Here are some

research journals related to CRC generator. In the table 2 shows the results of the comparison of

some methods or previous research.

Tabel 2. Results of The Comparison (10 pts/Bold pada Tabel 1.)

Research
Methode 1

(CRC-32)

Methode 2

(CRC-32)

Methode 3 (CRC-

32)

Number of 4-

input LUTs
340 300 223

Number of

Slices
166 194 114

Method 1 is research work of Abdul Rehman Buzdar and Liguo Sun with title "Cyclic

Redundancy Checking (CRC) Accelerator for Embedded Processor Datapaths ". In the research

journal, CRC generator is designed using modulo-2 division method, Number of LUT is 340 and

number slice that used is 166 slices. The simulation used is Xilinx ISE design suit with

implementation on Spartan-6 FPGA SP605 Evaluation Kit device.

Mothod 2 is research work of Chaitali Tohgaonkar , Prof. Sanjay B. Tembhurne and Prof.

Vipin S. Bhure with title "Design of Parallel CRC Generation for High Speed Application". The

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

86 | KILAT

research journal CRC generator is designed using modulo-2 division method, Number of LUT is

300 and number of slice that used is 194 slices. The simulation used is ISE Simulator with

implementation on Spartan-3 FPGA device.

Method 3 is the result of this research that has been done and simulated using Xilinx ISE

Simulator with implementation on Spartan 3E XC3S500E device. Method 1 uses a lot of resources

specifically the number of 4-input LUT used is more than method 2 and method 3, whereas the

number of slices used is less than method 2. Method 3 has fewer resources than method 1 and

method 2. In this research, the same modulo-2 parallel circuit method is used, but in this research

the determination of the clock begins with the search for the maximum of data processing, up to 16

bits (consisting of input data and CRC values) and the schematic circuit in this research is simpler

than previous research.

4. CONCLUSION

Based on the design results of the CRC-32 generator in this study, it can be concluded that

the design has been successfully made and is also in accordance with the expected research

objectives. The CRC generator will work when there is incoming data with a data width of 8 bits

and then performs CRC-32 IEEE 802.3 calculations. In this study, there are two conditions when

the first port is in high condition, the output data for the remaining port will be 0, while if it is in

low condition, the remaining port output will be proportional to the results of the calculation of the

incoming data. The circuit scheme is simple, the resulting noise is less and the resources used are

also less than previous studies with the same CRC method. This study requires 223 4-input LUT

resources, 114 Occupied slices, 72 IOB flip flops, 114 bonded IOBs and 1 BUFGMUX, where this

study obtained fewer resources than previous research.

REFERENCE

[1] B. Chris, IEEE 802.3 Cyclic Redundancy Check. Xilinx (2001).

[2] W. M. El-Medany (2012). FPGAImplementation of CRC with Error Correction. ICWMC

2012, The Eighth International Conference on Wireless and Mobile Communications.

[3] Pramod S P, Rajagopal A, and Akshay S Kotain (2012). FPGA Implementation of Single Bit

Error Correction using CRC. International Journal of Computer Applications, vol. 52, no. 10,

pp. 2-6.

[4] D. Ghosh, A. Mitra, A. Mukhopadhyay and A. Dawn (2013). A GENERALIZED CODE

FOR COMPUTING CYCLIC REDUNDANCY. International Journal of Students Research

in Technology & Management, vol. 1, pp. 192-202.

[5] P. Harika and B. V. V. Satyanarayana (2013). FPGA Based High Speed Parallel Cyclic

Redundancy Check. International Journal of Engineering Research & Technology, vol. 2, no.

3.

[6] Chaitali Tohgaonkar , Prof. Sanjay B. Tembhurne and Prof. Vipin S. Bhure (2015). Design

of Parallel CRC Generation for High Speed Application. International Journal of Advanced

Research in Computer and Communication Engineering, vol. 4, no. 6.

[7] Deepali P. Atrawalkar and Manoj D. Bagde (2017). Design and Simulation of Parallel CRC

Generation Architecture for High Speed Application. International Journal of Advanced

Research in Electrical, Electronics and Instrumentation Engineering, vol. 4, no. 7.

[8] Abdul Rehman Buzdar and Liguo Sun (2017). Cyclic Redundancy Checking (CRC)

Accelerator for Embedded Processor Datapaths. International Journal of Advanced

Computer Science and Applications (IJACSA), vol. 8, no. 2.

https://doi.org/10.33322/kilat.v11i1.1536

KILAT
Vol. 11, No. 1, April 2022, P-ISSN 2089-1245, E-ISSN 2655-4925

DOI: https://doi.org/10.33322/kilat.v11i1.1536

KILAT | 87

[9] N. G. Augoestien and Ryan Aditya (2019). Implementasi Rangkaian CRC (Cyclic

Redundancy Check) Generator pada FPGA (Field Programmable Gate Array). Indonesian

Journal of Electronics and Instrumentation Systems (IJEIS), vol. 9, pp. 65-74.

[10] Mitra, J. dan Nayak, T., (2017). Reconfigurable very high throughput low latency VLSI

(FPGA) design architecture of CRC 32, The VLSI Journal, 56, pp. 1-14.

[11] C. E. Kennedy and M. Mozaffari-Kermani (2015). Generalized parallel CRC computation on

FPGA. IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE),

Halifax, NS, 2015, pp. 107-113.

[12] A. R. Buzdar, L. Sun, R. Kashif, M. W. Azhar and M. I. Khan (2017). Cyclic Redundancy

Checking (CRC) Accelerator for Embedded Processor Datapaths. International J. of

Advanced Computer Science and Applications, Vol 8, No. 2, pp 321- 325.

[13] Y. Jun, D. Jun, L. Na, G. Yixiong and D. Yin (2010). FPGA-based multi-channel CRC

generator implementation. International Conference on E-Health Networking Digital

Ecosystems and Technologies (EDT), Shenzhen, 2010, pp. 81-84.

[14] M. F. Hasmi, dan A. G. Keskar (2017). An Optimized FPGA Implementation of CAN 2.0

Protocol Error Detection Circuitry. Indonesian Journal of Electrical Engineering and

Computer Science, Vol. 6, No. 3, pp. 602-614.

[15] S.N.V.P.Kumar, S. B. Jyothi, G. K. S. Tejaswi (2017). FPGA Based Design Of Parallel

CRCGeneration For High Speed Application. IJSRET (International Journal of Scientific

Research Engineering & Technology, Vol 6, 3, pp 258- 264.

https://doi.org/10.33322/kilat.v11i1.1536

